
IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-18
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

87 www.ijdcst.com

Commitment Processing Applications Development in

Operating System

Kanduru Nischel1, Krishna Kanth Tammana2, Kurapati Yuva Pavan3

Abstract: In operating system recently there have

been many changes those are services provided by

the operating systems like, multiprocessor systems,

memory management architectures and software

architectures dictate a reevaluation of the virtual

memory management have been advanced in many

ways. So there is a main problem that is identified by

using the Mach virtual memory management

systemwhich will only display only the architecture

independence and support to distributed system but

there are no further features that will improve the

functioning of the system. So,we introduce code

designedvirtual machinethat will mainly include

hardware performance feedback that will be taken

continuously and also include adaptive performance

features. By this we can mainly increase the

performance of system significantly.

Key Words: Virtual memory management,

distributed system, multiprocessor systems, adaptive

performance.

I. INTRODUCTION

Operating System:

 An operating system (OS) is software that

manages computer hardware resources and provides

common services for computer programs. The

operating system is an essential component of the

system software in a computer system. Application

programs usually require an operating system to

function.

 Time-sharing operating systems schedule

tasks for efficient use of the system and may also

include accounting software for cost allocation of

processor time, mass storage, printing, and other

resources.

 For hardware functions such as input and

output and memory allocation, the operating system

acts as an intermediary between programs and the

computer hardware,[1][2] although the application

code is usually executed directly by the hardware and

will frequently make a system call to an OS function

or be interrupted by it. Operating systems can be

found on almost any device that contains a computer

from cellular phones and video game consoles to

supercomputers and web servers.

Figure 1: Architecture of OS

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-18
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

88 www.ijdcst.com

 Architecture of OS will be explained by the

above diagram First the request will be sent to the

application software by the user and the application

will be carrying it to the operating system and

through OS it will be carried to hardware.

II. TYPES OF OPERATING SYSTEMS

Real-time

 A real-time operating system is a

multitasking operating system that aims at executing

real-time applications. Real-time operating systems

often use specialized scheduling algorithms so that

they can achieve a deterministic nature of behavior.

The main objective of real-time operating systems is

their quick and predictable response to events. They

have an event-driven or time-sharing design and

often aspects of both. An event-driven system

switches between tasks based on their priorities or

external events while time-sharing operating systems

switch tasks based on clock interrupts.

Multi-user

 A multi-user operating system allows

multiple users to access a computer system at the

same time. Time-sharing systems and Internet servers

can be classified as multi-user systems as they enable

multiple-user access to a computer through the

sharing of time. Single-user operating systems have

only one user but may allow multiple programs to run

at the same time.

Multi-tasking vs. single-tasking

 A multi-tasking operating system allows

more than one program to be running at the same

time, from the point of view of human time scales. A

single-tasking system has only one running program.

Multi-tasking can be of two types: pre-emptive and

co-operative. In pre-emptive multitasking, the

operating system slices the CPU time and dedicates

one slot to each of the programs. Unix-like operating

systems such as Solaris and Linux support pre-

emptive multitasking, as does AmigaOS.

Distributed

 A distributed operating system manages a

group of independent computers and makes them

appear to be a single computer. The development of

networked computers that could be linked and

communicate with each other gave rise to distributed

computing. Distributed computations are carried out

on more than one machine. When computers in a

group work in cooperation, they make a distributed

system.

Templated

 In an o/s, distributed and cloud computing

context, templating refers to creating a single virtual

machine image as a guest operating system, then

saving it as a tool for multiple running virtual

machines (Gagne, 2012, p. 716). The technique is

used both in virtualization and cloud computing

management, and is common in large server

warehouses. [3]

Embedded

 Embedded operating systems are designed

to be used in embedded computer systems. They are

designed to operate on small machines like PDAs

with less autonomy. They are able to operate with a

limited number of resources. They are very compact

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-18
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

89 www.ijdcst.com

and extremely efficient by design. Windows CE and

Minix 3 are some examples of embedded operating

systems.

Virtual Systems:

 A virtual machine (VM) is a software-based

emulation of a computer. Virtual machines operate

based on the computer architecture and functions of a

real or hypothetical computer.A virtual machine

(VM) is a software implementation of a machine

(e.g., a computer) that executes programs like a

physical machine. Virtual machines are separated

into two major classifications, based on their use and

degree of correspondence to any real machine:

 A system virtual machine provides a

complete system platform which supports

the execution of a complete operating

system (OS).These usually emulate an

existing architecture, and are built with the

purpose of either providing a platform to run

programs where the real hardware is not

available for use (for example, executing on

otherwise obsolete platforms), or of having

multiple instances of virtual machines

leading to more efficient use of computing

resources, both in terms of energy

consumption and cost effectiveness (known

as hardware virtualization, the key to a cloud

computing environment), or both.

 A process virtual machine (also, language

virtual machine) is designed to run a single

program, which means that it supports a

single process. Such virtual machines are

usually closely suited to one or more

programming languages and built with the

purpose of providing program portability

and flexibility (amongst other things). An

essential characteristic of a virtual machine

is that the software running inside is limited

to the resources and abstractions provided

by the virtual machine—it cannot break out

of its virtual environment.

A VM was originally defined by Popek and Goldberg

as "an efficient, isolated duplicate of a real machine".

Current use includes virtual machines which have no

direct correspondence to any real hardware [4].

System virtual machine advantages:

 Multiple OS environments can co-exist on

the same computer, in strong isolation from

each other

 The virtual machine can provide an

instruction set architecture (ISA) that is

somewhat different from that of the real

machine

 Application provisioning, maintenance, high

availability and disaster recovery[3]

The main disadvantages of VMs are:

 A virtual machine is less efficient than a real

machine when it accesses the hardware

indirectly

 When multiple VMs are concurrently

running on the same physical host, each VM

may exhibit a varying and unstable

performance (speed of execution, and not

results), which highly depends on the

workload imposed on the system by other

VMs, unless proper techniques are used for

temporal isolation among virtual machines.

III. RELATED WORK

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-18
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

90 www.ijdcst.com

 R. Fitzgerald stated that the integration of

virtual memory management and inter-process

communication in the Accentnetwork operating

system kernel is examined. The design and

implementation of the Accent memorymanagement

system is discussed and its performance, both on a

series of message-orientedbenchmarks and in normal

operation, is analyzed in detail.

 A. Spector stated that the TABS prototype is

an experimental facility that provides operating

system-level support for distributed transactions that

operate on shared abstract types. The facility is

designed to simplify the construction of highly

available and reliable distributed applications. This

paper describes the TABS system model, the TABS

prototype's structure, and certain aspects of its

operation. The paper concludes with a discussion of

the status of the project and a preliminary evaluation.

 R. A. Meyerstated that time-sharing systems

are now an important factor in the computer industry.

Because they allow a multiplicity of users to have

access to a computer by means of a terminal, they

encourage increasing numbers of people to utilize

computers. Thus, various ways of increasing the

capability of a computer in this area are being sought.

One such system is the a multi-access system that

manages the resources of a computer set up for time-

sharing such that each (remote) user appears to have

a complete, dedicated computer at his disposal. This

concept is known as a virtual machine and allows

each user to select the operating system he wishes to

run because concurrent operation of several operating

systems is possible.

 Richard Rashid stated that in the recent

times the technologies that are used in memory

management for example multiprocessor systems,

and software architectures dictate a reevaluation of

the virtual memory management support provided by

an operating system. So there will the problem posed

by this virtual memory system we cannot carry multi-

process systems and also the portability issues. So for

this Mach virtual memory management is used that

will support advanced features.

IV. EXISTING SYSTEM

Mach Virtual Memory:

 Mach's virtual memory system has two

primary objectives: (a) to be as portable as the UNIX

virtual memory system while supporting more

functionality (see below), and (b) to support

multiprocessing, distributed systems and large

address space.

The Virtual Memory User Interface

Its main features are:

1. A consistent virtual memory interface on

allmachines supporting Mach: some features, such

asshared pages, can be more or less efficiently

implementeddepending on the underlying hardware;

2. Full support for multiprocessing: this

includesthread support, efficient data sharing

mechanismsand a fully parallel implementation of the

virtualmemory;

3. Modular paging: there is no dedicated swap area

andexternal pagers are allowed to implement

filemapping or any application-specific paging

policy(such as recoverable virtual memory for

transactionmanagement).

Mach uses a global FIFO memory policy but

places expelled pages on an inactive list from which

they can be reclaimed. This the same policy as VMS

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-18
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

91 www.ijdcst.com

but for the fact that VMS allocated a separate resident

set of frames to

each process.

All virtual memory algorithms rely on locks

whenever exclusive access to a data structure has to

be guaranteed. To prevent deadlocks, all algorithms

gain locks using the same ordering. The total size of

the machine-dependent part of Mach'svirtual memory

implementation is about 16 kilobytes.

Applications:

Mach uses its memory object mapping

mechanism to implement standard UNIX I/O

semantics while allowing user programs to access

directly the mapped file data.

As in Accent, copy-on-write is used to

implement efficient message passing: messages can

be sent and received without having any data copied

until either the sender or the receiver tries to modify

the data. It also provides a much faster

implementation of the UNIX fork() and eliminates

the vfork() kludge. Shared libraries are supported

through the mapped file interface.

V. PROPOSED SYSTEM

The Code design Virtual Machine:

CVM models hardware and software

behaviorally. In this section we present the

underlying semantics and their role in system

modeling. The basis for modeling in CVM includes

software functions, hardware threads, software

threads, and software processes (which may be

considered threads with private namespace). These

are all schedulable execution entities that advance

system state — and are all potentially concurrent

entities. We consider a thread the basic unit of

modeling state advancement in any system; the

development of our CVM focuses on the

identification of existing thread types from the

hardware and software domains. We then consider

novel hierarchical system integration methodologies

and system scheduling strategies.

Resource-Based Execution Models:

We define resource-based computation (the

R domain) as computation that advances state as a

function of system inertia, or F(inertia). Table 1 lists

models of state update that closely couple behavior

and the underlying physical models that carry out the

behavior. When new behavioral threads are added in

the resource domain, new resources are added to

carry out the behavior. These models of concurrency

require, in general, a simulation to correctly advance

state specified by the behavior. Simulators typically

capture these models of concurrency by controlling

the advancement of simulation time and by allowing

designers to specify inertial properties of

computation.

type when they

occur

design scenarios

C continuous

update

timed

“sampling/generating”

D any value

change

async portions of HW

G global

sync

clock edges in HW

WH hardware

wait:

change to

level

HW synchronization,

processor interrupt

Table 1 Resource-based Models of

Concurrency

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-18
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

92 www.ijdcst.com

One way of viewing these loops is shown in

Figure 1, where each processing element has only

one loop assigned to it; it translates inputs to outputs

in the same shared memory space by time-

interleaving access on an idealized bus. Translation

occurs at the inertial processing rate of each

processing element. Private memories permit

program/data interactions, unlike pure hardware

models for which inertial propagation is (ideally)

static.

Figure 2: Idealized Resource-based computation

model

The structural scheduling implied by a

hardware description can thus be thought of as a

shared memory that is continuously sampled and

updated by the threads. Type C threads are a more

general model of resource-based computation than a

hardware model, and thus they form the basis of the

thread type of the resource modeling domain of the

CVM.

Interleaved Execution Models:

We define state-interleaved computation

(the I domain) as computation that advances state as a

function of system state, alone, or G(F(state)), where

the ÒGÓ stands for guarded execution. The threads

in Table 2 list models of state update that are

designed to be activated by a state-based, functional

global scheduling paradigm, independent of

resources except for an assumed single implied CPU

and shared memory space.

Figure 3: Code Design Virtual Machine

Combining Execution Models:

Figure 2 portrays state-interleaved (untimed)

and resource-based (timed) models of computation in

an idealized architectural view of our CVM. The

domains co-execute as peer-based modeling domains

as in but with novel scheduling abstractions and

hierarchical relationships (described later) allowing

the timed and untimed domains to be de-coupled, and

yet resolvable to the same scheduling semantic. Each

thread in the R domain implies addedresources to

support its execution. Resource threads (R) are

derived from type C threads, continuously translating

state in an unsynchronized fashion that merges

inertial modeling with shared state modeling. Each

thread in the I domain is derived from type G(F)

threads, activated by a state-interleaved scheduler,

which resolves to one or more continuous loop

resources.

Figure 4:Connecting CVM State Domains

Virtual machines provide a common

semantic toward which designers specify systems.

CVM has been defined to capture, on a peer basis,

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-18
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

93 www.ijdcst.com

the models of thread activation and state

advancement necessary to the design of physical

systems containing resource based and state-

interleaved threads.

VI. RESULTS

 In the results we mainly say that the existing

system that is Mach virtual machine system will not

be having the some properties that will be helping the

OS work effectively. So our results show that

proposed system that is a co-designed virtual

machine will be providing many significant

properties that are not provided by the existing

system. So, there will be much more improvement

for the project.

VII. CONCLUSION

 In this paper we conclude that the proposed

system will provide many important features that will

be helping the OS to work in an efficient manner

some of those features are adaptive

hardwareperformance features, continuous hardware

performancefeedback, and on-the-fly optimizing re-

compilation. And these properties are not provided

by the existing system and those will be having some

problem in portability issues and in multi-processing

systems. So as a result we use proposed system to

overcome those problems.

VIII. REFERENCES

[1].Stallings (2005). Operating Systems, Internals

and Design Principles. Pearson: Prentice Hall.

[2]. Dhotre, I.A. (2009). Operating Systems

Technical Publications.

[3]. Silberschatz Galvin Gagne (2012). Operating

Systems Concepts. New York: Wiley.

[4].Smith, James; Nair, Ravi (2005). "The

Architecture of Virtual Machines". Computer (IEEE

Computer Society).

[5].Machine-Independent Virtual Memory

Managementfor Paged Uniprocessor and

Multiprocessor - Architectures

Richard Rashid, Avadis Tevanian, Jr., Michael

Young, David Golub, Robert Baron.

[6].R. Fitzgerald and R. F. Rashid. “The integration

of virtual memorymanagement and interprocess

communication in Accent,” ACM Trans. Computer.

[7].A. Spector et al., “Support for distributed

transactions in the tabsprototype.” in Proc. 4th Symp.

Reliability Distributed Software Database System.

[8].R. A. Meyer, L. H. Seawright, “A virtual

machinetime-sharing system,” IBM System Journal.

